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Abstract 

We present a vision system for the 3D model-based tracking of unconstrained human 
movement. Using image sequences acquired simultaneously from multiple views, we recover 
the 3D body pose at each time instant without the use of markers. The pose-recovery problem 
is formulated as a search problem and entails finding the pose parameters of a graphical 
human model whose synthesized appearance is most similar to the actual appearance of the 
real human in the multi-view images. The models used for this purpose are acquired from 
the images. We use a decomposition approach and a best-first technique to search through 
the high dimensional pose parameter space. A robust variant of chamfer matching is used 
as a fast similarity measure between synthesized and real edge images. 

We present initial tracking results from a large new Humans-In-Action (HIA) database 
containing more than 2500 frames in each of four orthogonal views. The four image streams 
are synchronized. They contain subjects involved in a variety of activities, of various degrees 
of complexity, ranging from simple one-person hand waving to two-person close interaction 
in the Argentine tango. 

The support of the Advanced Research Projects Agency (ARPA Order No. C635) and the Office of 
Naval Research under Grant N00014-95-1-0521 is gratefully acknowledged, as is the help of Sandy German 
in preparing this paper. 
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1    Introduction 

The ability to recognize humans and their activities by vision is a key feature in the pursuit of 

designing machines capable of interacting intelligently and effortlessly in a human-inhabited 

environment. Besides this long-term goal, many applications are possible in the relatively 

near term, e.g. in virtual reality, "smart" surveillance systems, motion analysis in sports, 

choreography of dance and ballet, sign language translation, and gesture-driven user in- 

terfaces. In many of these applications a non-intrusive sensory method based on vision is 

preferable over a method (in some cases not even feasible) that relies on markers attached 

to the bodies of human subjects. 

Our approach to looking at humans and recognizing their activities has two major com- 

ponents: 

1. body pose recovery and tracking 

2. recognition of movement patterns 

Several choices have to be made in connection with body pose determination and tracking, 

which affect what features can be used: the type of model used (stick figure, volumetric 

model, none), the dimensionality of the space in which tracking takes place (2D or 3D), 

the number of sensors used (single, stereo, multiple), the sensor modality (visible light, 

infrared, range), the sensor placement (centralized vs. distributed) and mobility (stationary 

vs. moving). We consider the case where we have multiple stationary (visible-light) cameras, 

previously calibrated, and we observe one or more humans performing actions from multiple 

viewpoints. The aim of the first component of our approach is to reconstruct from the 

sequence of multi-view frames the (approximate) 3D body pose(s) of the human(s) at each 

time instant; this serves as input to the movement recognition component. In an earlier 

paper [6] movement recognition was considered as a classification problem and a Dynamic 

Time Warping method was used to match a test sequence with several reference sequences 

representing prototypical activities. The features used for matching were various 3D joint 

angles of the human body. In this paper, we focus on the pose recovery and tracking 

component of our system. 
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The outline of this paper is as follows. Section 2 provides a motivation for our choice 

of a 3D recovery approach rather than a 2D approach. In Section 3 we discuss 3D human 

modeling issues and the (semi-automatic) model acquisition procedure used by our system. 

Section 4 deals with the pose recovery and tracking component. Included is a bootstrapping 

procedure to start the tracking or to re-initialize it if it fails. Section 5 presents new ex- 

perimental results in which successful unconstrained whole-body movement is demonstrated 

on two subjects. These are initial results1 derived from a large Humans-In-Action (HIA) 

database containing two subjects involved in a variety of activities, of various degree of com- 

plexity. We discuss our results and possible improvements in Section 6. Finally, Section 7 

contains our conclusions. 

2    2D vs. 3D 

One may question whether it is desirable or feasible to try to recover 3D body pose from 2D 

image sequences for the purpose of recognizing human movement. An alternative approach is 

to work directly with 2D features derived from the images. Model-free 2D features are usually 

obtained by applying a motion-detection algorithm to the image (assuming a stationary 

camera) and obtaining the outline of a moving object, presumably human. Frequently, a 

K xN spatial grid is superimposed on the motion region, after a possible normalization of its 

extent. In each of the K x N tiles a simple feature is computed, and these are combined to 

form a K xN feature vector to describe the state of movement at time t. This is the approach 

taken by Polana and Nelson [23] and Darrell and Pentland [4]. Another possibility is to use 

2D model-based features, where the assumption is that as a result of 2D segmentation and 

tracking a sequence of 2D stick figure poses is available. For example, Goddard [8] uses 

the 2D angular velocities and orientations of the links as features. Guo et al. [10] uses a 

combination of link orientations and joint positions of the stick figure. 

Recognition systems using 2D model-free features have had early successes in matching 

human movement patterns. For constrained types of human movement (such as walking 

parallel to the image plane, involving periodic motion), many of these features have been 

xThe tracking results described in this paper are also available as video clips from our home pages. 
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successfully used for classification, as in [23]. This may indeed be the easiest and best so- 

lution for several applications. But we find it unlikely that reliable recognition of more 

unconstrained and complex human movements (e.g. humans wandering around, making ges- 

tures while walking and turning) can be achieved using these types of features exclusively. 

With respect to using 2D model-based features, we note that few systems actually derive 

the features they use for movement matching. Self-occlusion makes the 2D tracking problem 

hard for arbitrary movements and thus existing systems assume some a priori knowledge of 

the type of movement and/or the viewpoint under which it is observed [1, 19]. 2D labeling 

and tracking under more general conditions is attempted by [16]. 

We therefore investigate in this paper the more general-purpose approach of recovering 3D 

pose through time, in terms of 3D joint angles defined with respect to a human-centered [17] 

coordinate system. 3D motion recovery from 2D images is often an ill-posed problem. In the 

case of 3D pose tracking, however, we can take advantage of the available a priori knowledge 

about the kinematic and shape properties of the human body to make the problem tractable. 

Tracking also is well supported by the use of a 3D human model which can predict events 

such as (self) occlusion and (self) collision. Once 3D tracking is successfully completed, we 

have the benefit of being able to use the 3D joint angles as features for movement matching, 

which are viewpoint independent and directly linked to the body pose. Compared with 3D 

joint coordinates, they are less sensitive to variations in the size of the human. 

The techniques described in this paper lead to tracking on a fine scale, with the obtained 

joint angles being within a few degrees of their true values. Besides providing meaningful 

generic features for a movement matching component, such techniques are of independent 

interest for their use in virtual reality applications. In other applications, such as surveillance, 

continuous fine-scale 3D tracking will not always be necessary, and can be combined with 

tracking on a more coarse level (for example, considering the human body as a single unit), 

changing the mode of operation from one to another depending on context. For related work 

by Intille and Bobick see [13]. 



3    3D body modeling and model acquisition 

3D graphical models for the human body generally consist of two components: a repre- 

sentation for the skeletal structure (the "stick figure") and a representation for the flesh 

surrounding it. The stick figure is simply a collection of segments and joint angles with var- 

ious degree of freedom at the articulation sites. The representation for the flesh can either 

be surface-based (using polygons, for example) or volumetric (using cylinders, for example). 

There is a trade-off between the accuracy of representation and the number of parameters 

used in the model. Many highly accurate surface models have been used in the field of 

graphics [2] to model the human body, often using thousands of polygons obtained from 

actual body scans. In vision, where the inverse problem of recovering the 3D model from the 

images is much harder and less accurate, the use of volumetric primitives has been preferred 

to "flesh out" the segments because of the lower number of model parameters involved. 

For our purposes of tracking 3D whole-body motion, we currently use a 22-D OF model 

(3 DOF for the positioning of the root of the articulated structure, 3 DOF for the torso 

and 4 DOF for each arm and each leg), without modeling the palm of the hand or the 

foot, and using a rigid head-torso approximation. See [2] for more sophisticated methods of 

modeling. Regarding shape, we felt that simple cylindrical primitives (possibly with elliptic 

XY-cross-sections) [5, 11, 25] would not represent body parts such as the head and torso 

accurately enough. Therefore, we employ the class of tapered super-quadrics [18]; these 

include such diverse shapes as cylinders, spheres, ellipsoids and hyper-rectangles. Their 

parametric equation e = (eie2e3) is given by [18] 

/ aiC*C? X 

e = a (1) 

where — TT/2 < u < 7r/2, —7r < v < 7r, and where Sg = sign(sin#)| sin#|£, and C\ — 

sign(cos#)| cos0|£. In (1), a > 0 is a scale parameter, 01,02,03 > 0 are aspect ratio parame- 

ters, and e1? e2 are "squareness" parameters. Adding linear tapering along the z-axis to the 



super-quadric leads to the parametric equation s = (siS2s3) [18]: 

s = (2) 

^— + 1 ) ei 
aa3 

+ 1   e2 .aa3 

V es / 
where —1 < tx,t2 < 1 are the taper parameters along the x and y axes. So far, we have 

obtained satisfactory modeling results with these primitives alone (see experiments); a more 

general approach also allows deformations of the shape primitives [18, 21]. 

In this work, we derive shape parameters Sk = {ak,a\, a\, a|, e£, e^t\,t\) from the pro- 

jections of occluding contours in two orthogonal views, parallel to the zx- and zy-planes. 

This involves the human subject facing the camera front ally and sideways. We assume 2D 

segmentation of the two orthogonal views; a way to obtain such a segmentation is proposed 

in recent work by Kakadiaris and Metaxas [15]. Back-projecting the 2D projected contours 

of a quadric gives the 3D occluding contours, after which a coarse-to-fine search procedure 

is used over a reasonable range of parameter space to determine the best-fitting quadric. 

Fitting uses chamfer matching (see the next section) as a similarity measure between the 

fitted and back-projected occluding 3D contours. Figure 1 shows frontal and side views of 

the recovered torso and head for two persons: DARIU and ELLEN. Figure 2 shows their 

complete recovered models in a graphics rendering. These models are used in the tracking 

experiments of Section 5. 

4    Pose recovery and tracking 

The general framework for our tracking component is adapted from the early work by Rourke 

and Badler [26] and is illustrated in Figure 3a. Four main components are involved: predic- 

tion, synthesis, image analysis and state estimation. The prediction component takes into 

account previous states up to time t to make a prediction for time £ + 1. It is deemed more 

stable to do the prediction at a high level (in state space) than at a low level (in image 

space), allowing an easier way to incorporate semantic knowledge into the tracking process. 

The synthesis component translates the prediction from the state level to the measurement 

(image) level, which allows the image analysis component to selectively focus on a subset of 
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Figure 1: Frontal and side views of the recovered torso and head for the DARIU and ELLEN 

models. 

if»™ 

Figure 2: The recovered 3D models ELLEN and DARIU say "hi!" 

regions and look for a subset of features. Finally, the state-estimation component computes 

the new state using the segmented image. 

The above framework is general and can also be applied to other model-based tracking 

problems. In the remainder of this section, we discuss how the components are implemented 

in our system for the case of tracking humans, and how this relates to existing work.   In 
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Figure 3: (a) Tracking cycle; (b) pose-search cycle. 

the first subsection we cover the pose estimation component; the second subsection briefly 

covers the other components. 

4.1    Pose estimation 

One approach to pose recovery is to derive point matches between a 3D figure and its 2D 

projection to solve for the former, perhaps using several images. The advantage of this is 

that rigorous mathematical analysis can be applied to solve for the 3D pose; the problem 

can be solved using techniques borrowed from inverse kinematics (see the precursor to [24]), 

constrained optimization [29], or algebraic geometry [12]. On the downside, this approach 

requires feature points (usually the joints) to be accurately located in the images, which is 

quite difficult. Moreover, the approach seems to be very sensitive to occlusion. 

We therefore pursued an alternative approach to pose recovery, based on a generate-and- 

test strategy. Here, the pose recovery problem is formulated as a search problem and entails 

finding the pose parameters of a graphical human model whose synthesized appearance is 

most similar to the actual appearance of the real human (see Figure 3b). This approach 

has the advantage that the measure of similarity between synthesized appearance and actual 

appearance can now be based on whole contours and/or regions rather than on a few points. 
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So far, existing systems which work on real images using this strategy have had limitations. 

Perales and Torres [22] describe a system which involves input from a human operator. 

Hogg [11] and Rohr [25] deal with the restricted movement of walking parallel to the image 

plane, for which the search space is essentially one-dimensional. Downton and Drouet [5] 

attempt to track unconstrained upper-body motion, but conclude that the tracking fails 

due to propagation of errors. Recent work by Goncalves et al. [9] uses a Kalman-filtering 

approach to track arm movements from single-view images where the shoulder remains fixed. 

Finally, work by Rehg [24] is geared towards finger tracking. We aim to improve the previous 

approaches, where applicable, along the following lines. 

Similarity measure 

In our approach the similarity measure between model view and actual scene is based on 

arbitrary edge contours rather than on straight line approximations (as in [25], for example); 

we use a robust variant of chamfer matching [3]. The directed chamfer distance DD(T,R) 

between a test point set T and a reference point set R is obtained by summing the distances 

between each point in set T to its nearest point in R: 

DD{T,R)=Y]dd{t,R) = Y,min\\t-r\\ (3) 
teT terreR 

Its normalized version is 

DD{T,R) = DD(T,R)/\T\ (4) 

DD(T, R) can be efficiently obtained in a two-pass process by pre-computing the chamfer 

distance on a grid to the reference set. The resulting distance map is the so-called "chamfer 

image" (see Figures 4b and 4c). It would be efficient if we could use only DD(M, S) during 

pose search (as done in [3]), where M and S are the projected model edges and scene edges, 

respectively. In that case, the scene chamfer image would have to be computed only once, 

followed by fast access for different model projections. However, using this measure alone 

has the disadvantage (which becomes apparent in experiments) that it does not contain 

information about how close the reference set is to the test set. For example, a single point 

can be really close to a large straight line, but we may not want to consider the two entities 



very similar. We therefore use the undirected normalized chamfer distance 

D{T, R) = (DD{T, R) + DD{R, T))/2 (5) 

(b) (c) 

Figure 4: (a) Scene edge image (after preprocessing); (b) filtered edge image (model predic- 
tion in grey, accepted edges in black); (c) chamfer image. 

A further modification is to perform outlier rejection on the distribution dd(t, R). Points 

t for which dd(t,R) > 6 are rejected outright; the mean ii and standard deviation a of the 

resulting distribution is used to reject points t for which dd(t, R) > LI + 2a. 

Other measures which work directly on the scene image could (and have) been used to 

evaluate a hypothesized model pose: correlation (see [24] and [9]) and average contrast value 

along the model edges (a measure commonly used in the snake literature). The reason we 

opted for preprocessing the scene image (i.e. applying an edge detector) and chamfer match- 

ing is that it provides a gradual measure of similarity between two contours while having a 

long-range effect in image space. It is gradual since it is based on distance contributions of 

many points along both model and scene contours; as two identically contours are moved 

apart in image space the average closest distance between points increases gradually. This 

effect is noticeable over a range up to a threshold #, in the absence of noise. The two factors, 

graduality and long-range effect, make (chamfer) distance mapping a suitable evaluation 

measure to guide a search process. Correlation and average contrast along a contour, on the 

other hand, typically provide strong peak responses but rapidly declining off-peak responses. 
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Multi-view approach 

By using a multi-view approach we achieve tighter 3D pose recovery and tracking of the hu- 

man body than by using one view only; body poses and movements that are ambiguous from 

one view can be disambiguated from another view. We synthesize appearances of the human 

model for all the available views, and evaluate the appropriateness of a 3D pose based on the 

similarity measures for the individual views (see Figure 3b). Currently, the contributions 

from the different views are weighed inversely proportionally to the distance between the 

human torso center and the camera plane (this uses some simplifying assumptions, among 

them orthogonal projection). We plan to include a weighting scheme which reasons locally 

(per body unit) about the reliability of the observations. 

Search 

Search techniques are used to prune the high dimensional pose parameter space (see also 

[20]). We currently use best-first search; we do this because a reasonable initial state can be 

provided by a prediction component during tracking or by a bootstrapping method at start- 

up. The use of a well-behaved similarity measure derived from multiple views, as discussed 

before, is likely to lead to a search landscape with fairly wide and pronounced maxima 

around the correct parameter values; this can be well detected by a local search technique 

such as best-first. Nevertheless, the fact remains that the search space is very large and 

high-dimensional (22 dimensions per human, in our case); this makes "straight-on" search 

daunting. The proposed solution to this is search space decomposition. Define the original 

./V-dimensional search space X at time t as 

s = {{Pi} x •■• x \PN}},       # = £ - An-, ...,& +A2;,   stepA3t (6) 

where P = (p\,... ,PN) is the state prediction for time t. We define the decomposed search 

space S* as 

=   (£i,£2) (7) 

Si   = = {K)x- ■ x{PiM) X{PiM+i) 
x • • x {piN}} (8) 

s2  = =   {{PiJx- ' X {&M) 
X
{P«W+I} 

X • 

10 

■ x {PN}} (9) 



where (p^,... ,piM) is derived from the best solution to searching for Ex. The above search 

space decomposition can be applied recursively and can be represented by a tree in which 

non-leaf nodes represent search spaces to be further decomposed and leaf nodes are search 

spaces to be actually processed. The recursive scheme we propose for the pose recovery of 

K humans is illustrated in Figure 5. In order to search for the pose of the z'-th human in the 

scene we synthesize humans 1,..., i — 1 with the best pose parameters found so far, and 

synthesize humans i +1,..., K with their predicted pose parameters. Next we search for the 

best torso/head configuration of the z'-th human while keeping the limbs at their predicted 

values, etc. 

Figure 5: A decomposition of the pose-search space. 

We have found in practice that it is more stable to include the torso-twist parameter in 

the arm (or leg) search space, instead of in the torso/head search space. This is because 

the observed contours of the torso alone are not very sensitive to twist. Given that we keep 

the root of the articulated figure fixed at the torso center, the dimensionalities of the search 

spaces we actually search are 5, 9, and 8, respectively. 

Initialization 

Our bootstrapping procedure for starting the tracking currently handles the case where 

the moving objects (i.e.   humans) do not overlap and are positioned against a stationary 
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background. The procedure starts with background subtraction, followed by a thresholding 

operation to determine the region of interest; see Figure 6. This operation can be quite 

noisy, as shown in the figure. The aim is to determine from this binary image the major axis 

of the region of interest; in practice this is the axis of the prevalent torso-head configuration. 

Together with the major axis of another view, this allows the determination of the major 3D 

axis of the torso. Additional constraints regarding the position of the head along the axis 

(currently, implemented as a simple histogram technique) allow a fairly precise estimation 

of all torso parameters, with the exception of the torso twist which is searched for, together 

with the arm/leg parameters, in a coarse to fine fashion. 

Figure 6: Robust major axis estimation using iterative PCA (cameras FRONT and RIGHT). 
Successive approximations to the major axis are shown in lighter colors. 

The determination of the major axis can be achieved robustly by iteratively applying a 

principal component analysis (PCA) [14] on data points sampled from the region of interest. 

At each iteration the "best" major axis is computed using PCA and the distribution of 

the distances from the data points to this axis is computed. Data points whose distances 

to the current major axis are more than the mean plus twice the standard deviation are 

considered outliers and removed from the data set. This process results in the removal of 

the data points corresponding to the hands if they are located lateral to the torso, and also 

of other types of noise.  The iterations are halted if the parameters of the major axis vary 
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by less than a user-defined fraction from one iteration to another. In Figure 6 the successive 

approximations to the major axis are shown by straight lines in increasingly light colors. 

4.2     The other components 

Our prediction component works in batch mode and uses a constant acceleration model 

for the pose parameters. In other words, a second-degree polynomial is fitted at times 

£,..., t — T +1, and its extrapolated value at times t +1 is used for prediction. The synthesis 

component uses a standard graphics Tenderer to give the model projections for the various 

camera views. Finally, the image analysis component applies an edge detector to the real 

images, performs linking, and groups the edges into constant-curvature segments. These 

segments are each considered as a unit and either accepted into or rejected from the filtered 

scene edge map, a decision which is based on their directed chamfer distances to the projected 

model edges; see Figure 4. This process facilitates the removal of unwanted contours which 

could disturb the scene chamfer image (in Figure 4, for example, background edges around 

the head area in the original edge image are absent in the filtered edge image). 

5    Experiments 

We compiled a large data base containing multi-view images of human subjects involved in 

a variety of activities. These activities are of various degrees of complexity, ranging from 

single-person hand waving to the challenging two-person close interaction of the Argentine 

tango. The data was taken from four (near-) orthogonal views (FRONT, RIGHT, BACK and 

LEFT) with the cameras placed wide apart in the corners of a room for maximum coverage; 

see Figure 7. The background is fairly complex; many regions contain bar-like structures, 

and some regions are highly textured (observe the two VCR racks in the lower-right image of 

Figure 7). The subjects wore tight-fitting clothes. Their sleeves were of contrasting colors, 

simplifying the edge detection somewhat in cases where one body part occludes another. 

Because of disk space and speed limitations, the more than one hour's worth of image 

data was first stored on (SVHS) video tape. A subset of this data was digitized (properly 

aligned by its time code (TC)), and makes up the HIA database, which currently contains 
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Figure 7: Epipolar geometry of cameras FRONT (upper-left), RIGHT (upper-right), BACK 
(lower-left) and LEFT (lower-right): epipolar lines are shown corresponding to the selected 
points from the view of camera FRONT. 

more than 2500 frames in each of the four views. 

The cameras were calibrated in a two-step process, first for the intrinsic parameters 

(individually) and then for the extrinsic parameters (in pairs). We used an iterative non- 

linear least square method to do this; it was developed by Szeliski and Kang [27] who kindly 

made it available to us. Figure 7 illustrates the outcome; the epipolar lines shown in the 

RIGHT, BACK and LEFT views correspond to the selected points in the FRONT view. One can 

see that corresponding points lie very close to or on top of the epipolar lines. Observe how 

all the epipolar lines emanate from one single point in the BACK view: the FRONT camera 

center lies within its view. 

Our system is implemented under A.V.S. (Advanced Visualization System). Following 

its data flow network model, it consists of independently running modules, receiving and 

passing data through their interconnections. The implemented A.V.S. network bears a close 

resemblance to Figure 3.  The parameter space was bounded in each angular dimension by 
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±15 degrees, and in each xi/z-dimension by ±10 cm around the predicted parameter values. 

The discretization was 5 degrees and 5 cm, respectively. We kept these values constant 

during tracking. 

Figures 8-13 illustrate tracking for persons DARIU and ELLEN. The movement performed 

can be described as raising the arms sideways to a 90 degree extension, followed by rotating 

both elbows forward. Moderate opposite torso movement takes place for balancing as the 

arms are moved forward and backwards. The current recovered 3D pose is illustrated by the 

projection of the model in the four views, shown in white. (The displayed model projections 

include for visual purposes the edges at the intersections of body parts; these were not 

included in the chamfer matching process.) It can be seen that tracking is quite successful, 

with a good fit for the recovered 3D pose of the model for the four views. Figure 14 shows 

some of the recovered pose parameters for the DARIU sequence. Figure 15 shows the result of 

movement recognition using a variant of Dynamic Time Warping (DTW), described in [6]; 

for the time-interval in which the elbows rotate forward, we use the left hand pose parameters 

derived from the ELLEN sequence as a template (see Figure 15a) and match them with the 

corresponding parameters of the DARIU sequence. Matching with DTW allows (limited) 

time-scale variations between patterns. The result is given in Figure 15b, where the DTW 

dissimilarity measure drops to a minimum when the corresponding pose pattern is detected 

in the DARIU sequence. 

6    Discussion 

As we process more sequences of our HIA database our aim is to be able to process the more 

complex sequences, involving fast-varying poses, multiple bodies and close interactions. One 

such example is the "Basico" sequence, in which two persons dance the basic steps of the 

Argentine tango at normal speed; see Figure 16. We show a manual positioning of the 3D 

models of the dancers. 

We consider several improvements to our system. On the image processing level, we are 

interested in a tighter coupling between prediction and segmentation. Currently, the im- 

age processing component applies a general-purpose edge detector and uses prediction only 
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Figure 8: 
LEFT. 

Tracking sequence D-TwoElbowRot, t = 0, cameras FRONT, RIGHT, BACK and 

for filtering purposes. We are interested in more actively using the prediction information 

through the use of deformable templates. On the algorithmic level, we are interested in 

methods of further constraining the search space, based on either image flow or stereo cor- 

respondence. Finally, for performance, we plan a parallel and distributed implementation of 

our system, an extension which is well supported by our approach and A.V.S. 

7    Conclusions 

We have presented a new vision system for the 3D model-based tracking of unconstrained 

human movement from multiple views. A large Humans-In-Action database has been com- 

piled for which initial tracking results were shown. We can draw two conclusions from these 

initial experimental results. First, our calibration and human modeling procedures sup- 

port a (perhaps surprisingly) good 3D localization of the model such that its projections 

match the all-around camera views. This is good news for the feasibility of any multi-view 

3D model-based tracking method, not just ours. Second, the proposed pose recovery and 

tracking method based on, among others, the chamfer distance similarity measure, is indeed 
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Figure 9: Tracking sequence D-TwoElbowRot: t = 10 (cameras FRONT, RIGHT, BACK and 
LEFT). 

able to maintain a good fit over time. This is encouraging as we turn to the more complex 

sequences. 
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Figure 10: Tracking sequence D-TwoElbowRot: t = 25 (cameras FRONT, RIGHT, BACK and 
LEFT). 

Figure 11: 
RIGHT). 

Tracking sequence E-TwoElbowRot:  t = 0 (cameras FRONT, LEFT, BACK and 
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Figure 12: Tracking sequence E-TwoElbowRot: t 
RIGHT). 

10 (cameras FRONT, LEFT, BACK and 

Figure 13: Tracking sequence E-TwoElbowRot: t = 25 (cameras FRONT, LEFT, BACK and 
RIGHT). 
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Figure 14: Recovered 3D pose parameters vs. frame number, D-TwoElbowRot; (a) and 
(b): LEFT and RIGHT ARM, abduction (x), elevation (o), twist (+) and extension angle (*) 
(c): TORSO, abduction (x), elevation (o), twist angle (+) and x- (dot), y- (dashdot), and 
^-coordinates (solid). 
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Figure 15: (a) A template T for the left arm movement, extracted from E-Two Elbow Rot; 
(b) DTW dissimilarity measure of matching template T with the LEFT ARM pose parameters 
of D-TwoElbowRot. 
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Figure 16:  "Manual" 3D pose recovery for a couple dancing the Argentine tango (cameras 
FRONT, RIGHT, BACK and LEFT). 
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